Name:_____

Answer each question. For True/False statements, circle \mathbf{T} or \mathbf{F} .

Linear algebra review:

Let A be an $m \times n$ matrix, and let \vec{b} be a vector in \mathbb{R}^m .

For $\vec{u}, \vec{v} \in \mathbb{R}^n$, the notation $\vec{u} \leq \vec{v}$ means $u_1 \leq v_1, u_2 \leq v_2, \ldots, u_n \leq v_n$.

1. The equation $A\vec{x} = \vec{b}$ has a solution if and only if \vec{b} is a linear combination of the columns of A. \mathbf{T} / \mathbf{F}

Student ID:____

- 2. $V = \{\vec{x} \mid A\vec{x} = \vec{b}\}$ is infinite if and only if dim(Nul(A)) > 0. **T** / **F**
- 3. If m < n, then $V = \{\vec{x} \mid A\vec{x} = \vec{b}\}$ is infinite. **T** / **F**
- 4. $\{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ is a subspace of \mathbb{R}^n . **T** / **F**
- 5. $\{\vec{x} \mid A\vec{x} \leq \vec{0}\}$ is a subspace of \mathbb{R}^n . **T** / **F**
- 6. $\{\vec{x} \mid A\vec{x} = \vec{b}\}$ is a subspace of \mathbb{R}^n . **T** / **F**
- 7. $\{\vec{x} \mid A\vec{x} = \vec{0}\}$ is a subspace of \mathbb{R}^n . **T** / **F**
- 8. Homogeneous equations $A\vec{x} = \vec{0}$ always have a solution. **T** / **F**
- 9. If \vec{p} is a solution to $A\vec{x} = \vec{b}$, then $\vec{p} + \vec{v}$ is also solution to $A\vec{x} = \vec{b}$ for any solution \vec{v} to $A\vec{x} = \vec{0}$. T / F
- 10. Row operations on the augmented matrix $[A \ \vec{b}]$ are equivalent to multiplying on both sides of $A\vec{x} = \vec{b}$ by an *elementary matrix*. **T** / **F**
- 11. Suppose A is invertible. We can use row operations to transform the augmented matrix $[A \ \vec{b}]$ into the matrix $[I_n \ \vec{p}]$ for some \vec{p} in \mathbb{R}^n . **T** / **F**
- 12. Suppose m < n and the first m columns of A are linearly independent. We can use row operations to transform the augmented matrix $[A \vec{b}]$ into the matrix $[I_m D \vec{p}]$ for some $m \times (n m)$ matrix D and some \vec{p} in \mathbb{R}^n . T / F
- 13. $\vec{x} = \begin{bmatrix} \vec{p} \\ \vec{0} \end{bmatrix}$ is a solution to $A\vec{x} = \vec{b}$ in the previous problem. \mathbf{T} / \mathbf{F}
- 14. Consider linear equation $A\vec{x} = \vec{b}$. If the *rows* of A are rearranged, then the order of the variables in \vec{x} must be rearranged. **T** / **F**
- 15. Consider linear equation $A\vec{x} = \vec{b}$. If the *columns* of A are rearranged, then the order of the variables in \vec{x} must be rearranged. **T** / **F**