Name: \qquad Student ID: \qquad
Answer each question. For True/False statements, circle T or F.
Linear algebra review:
Let A be an $m \times n$ matrix, and let \vec{b} be a vector in \mathbb{R}^{m}.
For $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the notation $\vec{u} \leq \vec{v}$ means $u_{1} \leq v_{1}, u_{2} \leq v_{2}, \ldots, u_{n} \leq v_{n}$.

1. The equation $A \vec{x}=\vec{b}$ has a solution if and only if \vec{b} is a linear combination of the columns of A. \mathbf{T} / \mathbf{F}
2. $V=\{\vec{x} \mid A \vec{x}=\vec{b}\}$ is infinite if and only if $\operatorname{dim}(N u l(A))>0$. \mathbf{T} / \mathbf{F}
3. If $m<n$, then $V=\{\vec{x} \mid A \vec{x}=\vec{b}\}$ is infinite. \mathbf{T} / \mathbf{F}
4. $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is a subspace of \mathbb{R}^{n}. \mathbf{T} / \mathbf{F}
5. $\{\vec{x} \mid A \vec{x} \leq \overrightarrow{0}\}$ is a subspace of \mathbb{R}^{n}. \mathbf{T} / \mathbf{F}
6. $\{\vec{x} \mid A \vec{x}=\vec{b}\}$ is a subspace of \mathbb{R}^{n}. \mathbf{T} / \mathbf{F}
7. $\{\vec{x} \mid A \vec{x}=\overrightarrow{0}\}$ is a subspace of \mathbb{R}^{n}. \mathbf{T} / \mathbf{F}
8. Homogeneous equations $A \vec{x}=\overrightarrow{0}$ always have a solution. T/F
9. If \vec{p} is a solution to $A \vec{x}=\vec{b}$, then $\vec{p}+\vec{v}$ is also solution to $A \vec{x}=\vec{b}$ for any solution \vec{v} to $A \vec{x}=\overrightarrow{0}$. \mathbf{T} / \mathbf{F}
10. Row operations on the augmented matrix $[A \vec{b}]$ are equivalent to multiplying on both sides of $A \vec{x}=\vec{b}$ by an elementary matrix. \mathbf{T} / \mathbf{F}
11. Suppose A is invertible. We can use row operations to transform the augmented matrix $[A \vec{b}]$ into the matrix $\left[I_{n} \vec{p}\right]$ for some \vec{p} in \mathbb{R}^{n}. T/F
12. Suppose $m<n$ and the first m columns of A are linearly independent. We can use row operations to transform the augmented matrix $[A \vec{b}]$ into the matrix $\left[I_{m} D \vec{p}\right]$ for some $m \times(n-m)$ matrix D and some \vec{p} in \mathbb{R}^{n}. T / F
13. $\vec{x}=\left[\begin{array}{c}\vec{p} \\ \overrightarrow{0}\end{array}\right]$ is a solution to $A \vec{x}=\vec{b}$ in the previous problem. \mathbf{T} / \mathbf{F}
14. Consider linear equation $A \vec{x}=\vec{b}$. If the rows of A are rearranged, then the order of the variables in \vec{x} must be rearranged. \mathbf{T} / \mathbf{F}
15. Consider linear equation $A \vec{x}=\vec{b}$. If the columns of A are rearranged, then the order of the variables in \vec{x} must be rearranged. \mathbf{T} / \mathbf{F}
